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Abstract-The flow engendered by and the convection heat transfer to or from a rotating sphere 
have been investigated experimentally and theoretically over ranges of Reynolds numbers from zero 
to 9 x 10J, Grashof numbers from 7 x lo4 to 3 x log, and Prandtl numbers from 0.024 to 217. For 
Prandtl numbers between 4.0 and 217 and Reynolds numbers below 5 x lo4 the average Nusselt 
number for cooling as well as heating was found to be in reasonably good agreement with the result of 
a theoretical analysis based on a solution of the boundary-layer equations in which the boundary- 
layer thickness around the sphere was assumed to be uniform. A detailed study of the boundary-layer 
flow by means of a hot wire and several visualization methods showed, however, that the thickness 
of the boundary layer increases with angular distance from the poles and that in the vicinity of the 
equator where the boundary layers from the upper and lower halves of a rotating sphere meet, a 
complex flow separation takes place. The extent of the separation region was determined and some 

unusual transition phenomena were observed. 
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Subscripts 
convective ; 

2 fluid; 
r, radiative; 
& sphere. 

Dimensionless parameters 
Gr, Grashof number, g/3(Ts - T,)Dz/vf; 
G, average Nusselt number, hl>s/kf; 
Pr, Prandtl number, (c@F/k)f; 
Re, Reynolds number, QDf/vf; 
X, Ku/ Re112. 

INTRODUCTION 
THE flow and convection heat-transfer charac- 
teristics of a sphere rotating about a diameter 
in an otherwise undisturbed medium are of 
interest in fluid mechanics, meterology, astro- 
physics and aeronautical engineering. The first 
study of such a system was undertaken by Sir 
George Stokes in 1845. Although Stokes was 
mainly concerned with the pressure distribution 
around a rotating sphere, he also gave a quite 
accurate description of the flow mechanism: 
“The sphere acts like a centrifugal fan, the 
motion at a distance from the sphere consisting 
of a flow outwards from the equator and in- 
wards towards the poles, superimposed on a 
motion of rotation” [l]. 

It was not until more than a century later that 
the problem received again serious attention. 
Using boundary-layer approximations the flow 
engendered by a rotating sphere has recently 
been investigated theoretically by Howarth [2] 
and Nigam [3], and the temperature field in the 
vicinity of a heated sphere has been studied by 
Singh [4] in the laminar flow regime. Experi- 
mental measurements of velocity profiles have 
been reported by Kobashi [5] and the heat 
transfer by convection from a heated sphere 
rotating in air has been investigated experi- 
mentally by Nordlie and Kreith [6]. 

This paper corrects and extends Singh’s 
analysis to permit theoretical calculations of the 
average heat-transfer coefficient for a rotating 
sphere, presents experimental data of convection 
heat-transfer coefficients to and from rotating 
spheres over wide ranges of Reynolds and 
Prandtl numbers, compares the analytical and 
experimental results, and presents some addi- 

tional measurements of boundary-layer velocity 
profiles, including the extent of a turbulent 
separation zone which was observed in the 
vicinity of the equator. Motion pictures of the 
flow pattern were taken with the aid of a smoke 
type flow visualization technique and they are 
available on loan from the senior author. 

EQUII’MENT AND EXPERIMENTAL TECHNIQUE 
FOR THE HEAT-TRANSFER MEASUREMENTS 

The heat-transfer tests were performed with a 
type 2017-T-4 solid aluminum sphere, 6 inches in 
diameter, and with a smaller 224K aluminum- 
bronze sphere, 2 inches in diameter. The construc- 
tion of these spheres is shown schematically in 
Fig. 1 and a photograph of the experimental 
installation is shown in Fig. 2. Each sphere was 
attached to a vertical hollow shaft which was 
driven at the top by a small motor whose 
rotational speed could be adjusted and controlled 
between 30 and 2500 r.p.m. by means of a power- 
stat connected to a voltage regulator. The tem- 
perature of the sphere was measured by means 
of a copper-constantan thermocouple which was 
peened near the center into the larger aluminum 
sphere, but immersed into a pool of mercury 

FIG. 1. Schematic sketch showing construction of the 
6 in diameter aluminum sphere. 



FIG. 2. Photograph of the experimental equipment used in heat-transfer tests with 2 in. diameter sphere. 

f. p. 882 H.M 



FIG. 6. Photograph of velocity magnitude and direction finder with hot wire probe and cxperimentnl 
equipment used in flow studies. 



Re = 3.4 x to4 

Re = 7.9 x to’ Re I 10.5 x IO* 
FIG. 10. Smoke photograph of the boundary-layer interaction in the vicinity of the equator at Reynolds 

numbers of 3.4 x lo*, 5.25 jc 1O1, 7.9 x lo”, and 10.5 x lo*. 
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inside the smaller aluminum-bronze sphere. 
The rotating copper lead of the thermocouple 
was connected to a slipring-brush arrangement 
equipped with an automatic timer which 
periodically lifted the spring-loaded brushes off 
the rotating slipring to prevent excessive fric- 
tional heating. Galling between the copper slip- 
rings and copper brushes was prevented by 
plating the ends of the brushes with a layer of 
silver which was sufficiently thin to avoid 
thermocouple effects. The constantan lead 
of the thermocouple was taken out in the center 
at the upper end of the shaft where the tip of a 
small, springloaded constantan cone which was 
connected to a stationary constantan wire made 
contact with a conical indentation in the 
rotating constantan wire which was attached to a 
nylon bushing in the shaft. In addition to the 
sphere temperature also the temperature of the 
cooling or heating medium was measured by 
means of a thermocouple and both temperatures 
were recorded as a function of time during each 
test on an automatic strip-chart temperature 
recorder. 

The shaft supporting the sphere was made as 
small as possible to reduce heat conduction 
along it. Some fin action of the shaft was 
unavoidable, but a calculation of the maximum 
heat loss from the sphere along the shaft showed 
that it was less than 1 per cent of the total heat 
loss even under the most unfavorable test 
conditions. 

The experimental technique is described in 
detail in [6] and [7]. Briefly, before each test the 
sphere was heated to about 250°F in a radiant 
type heating box which could be slipped over it 
from below. After the desired initial temperature 
had been reached, the motor was turned on, the 
speed was adjusted to the desired value, the 
sphere was immersed in the appropriate medium, 
and the temperature-time histories of the sphere 
and the medium were recorded on an automatic 
strip-chart temperature recorder. It was known 
from previous experiments [6] that the internal 
thermal resistance of a small metal sphere is so 
small compared to the convective thermal resis- 
tance between the surface of the sphere and its 
environment that the sphere may be treated as a 
lumped parameter system without introducing 
an appreciable error. The overall average heat- 

transfer coefficient could, therefore, be deter- 
mined by means of a transient technique 
described in [6] and [8], which gives the equation 

h 
e 

= (4/3) naspsc, (dT,ldt) 
4na2 (T, - T,) 

for a sphere. The slopes of the sphere tempera- 
ture versus time curves, dT,/dt, could be deter- 
mined numerically from the experimental data 
at any time r. But in order to facilitate the reduc- 
tion of the experimental data and to maintain 
uniformity of the physical properties in all tests, 
the slope of the temperature versus time curve 
was evaluated for each test at that instant when 
the arithmetic mean between the sphere tem- 
perature and the environment temperature was 
100°F. A few spot checks at different tempera- 
tures showed that this procedure was satisfac- 
tory. 

The average overall heat-transfer coefficient, 
which is the value determined by the experiments, 
is the sum of the average convection heat-transfer 
coefficient it, and the radiation heat-transfer 
coefficient h,., or 

h = h, + h,. (2) 
The contribution of radiative heat transfer to the 
total rate of heat transfer was appreciable only 
for tests in air. For these tests the radiation heat- 
transfer coefficient can be expressed in the form 

h, = ca(T,2 + T;) (Ts + Tm) (3) 

where Ts is the value of the sphere temperature 
at that time in the cooling process at which 
(dT,/dt) is evaluated. The convection heat- 
transfer coefficient was then obtained by sub- 
tracting the appropriate value of h, from R 
according to (2). For tests with water, oil, and 
mercury the radiation correction is negligible. 

Whereas tests in air could be made with the 
entire room as the environment, for tests with 
water, oil, and mercury, a hnite container 
had to be used. In order to make sure that the 
container would be sticiently large so that its 
walls would not interfere with the flow which 
would exist in a quasi infmite environment, a 
series of tests were made with the sphere rotating 
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first in the room and then inside the container 
which was later used for the tests with liquids. 
In no case did the heat-transfer coefficients 
obtained in these tests differ from each other at 
similar Reynolds numbers by more than 2 per 
cent, which is well within the accuracy of the 
experimental results. It may therefore be assumed 
that the test results for air as well as for water, 
oil, and mercury correspond to conditions which 
would obtain in an infinite medium. 

EXPERIMENTAL RESULTS OF THE HEAT- 
TRANSFER EXPERIMENTS* 

Cooling tests were performed in air, water, and 
oilt with the larger as well as with the smaller 
sphere, in mercury only with the smaller sphere, 
and heating tests were performed with the smaller 
sphere alone in water. All test results were 
reduced to appropriate dimensionless numbers 
in which the physical properties were evaluated 
at the arithmetic mean between the temperature 
of the sphere and the temperature of the sur- 
rounding medium. 

- -_.- 
* A detailed tabulation of the data and the experi- 

mental results can be found in [7] and [9]. 
t The oil was Spindura BB of A.P.1, gravity 31, kindly 

supplied by the Texaco Company. 

A. SULLIVAN and S. N. SINHA 

Experiments with a rotating cylinder [lo] and 
a rotating sphere [6] under conditions where 
both free and forced convection are significant 
have shown that free convection effects become 
negligibly small when the Grashof number is 
10 per cent or less than the square of the Rey- 
nolds number. According to this criterion 
gravitationally induced free convection could be 
neglected in all tests reported here so that the 
Nusselt, Reynolds, and Prandtl numbers were 
the only variable parameters. 

The experimental results are shown in Fig. 3 
where the average Nusselt number h,D/kf is 
plotted as a function of the rotational Reynolds 
number QD,Z/vf for tests with both spheres in oil, 
water, air, and mercury. An inspection of the 
lines faired through the data shows that at 
Reynolds numbers below about 5 x lo4 the 
Nusselt number for oil, water, and air increases 
with the square root of the Reynolds number. At 
Reynolds numbers above 5 x lo5 the Nusselt 
number for water and air is proportional to 
Re’J’67, but in this range no data could be ob- 
tained with the oil because of its high viscosity. 

As will be shown in more detail later on, the 
change in the functional relationship between 
zandReatReof5 >< lo5 is due to a spreading 

FIG. 

LEGEND 

A 2in Sphere Cooling in Oil (Pr: 2.17) 
0 2in Sphere Cooling in Water (Pr: 452) 
B 2in Sphere Heating in Water (F’r: 4.52) 

0 6in Sphere Cooling in Water [PI: 4.57) 

,Ooo _ x 6in Sphere Cooling in Air (Pr= 0.72) 

1 v 2in Sphere Cooling in Mercury (Pr=OO24) 

= 0’ 6in Sphere Cooling in Water in Small Tank 

Nu 

IO 000 100 000 1000000 

Re 
3. Experimental results of heat-transfer tests-average Nusselt number vs. Reynolds number 

air, water, oil, and mercury. 
fox 
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A 2 in Sphere Cooling in 011 IPI= 217) 
0 2 in Sphere Cooling in Waler (Pc4.5’2) 
@ 2 in Sphere Healing I” Water (Pr=4,52) 
0 Sin Sphere Cooling in Water (Pr.4.52) 
0’ 6 in Sphere Cooling in Water in Small Tank 
X 6 in Sphere Cooling in Air (Pr=O,?Z) 

Re 

FIG. 4. Correlation of experimental results-% PF/Re vs. Re. 

of a turbulent separation zone in the vicinity 
of the equator. At Reynolds numbers below 
5 x lo5 the separation region was confined to 
less than 2” on both sides of the equator and the 
flow over the rest of the surface of the sphere 
was laminar. 

In order to obtain a generalized correlation 
of the type i%= f (Re, Pr) and to compare the 
experimental results with theoretical calcula- 
tions for the average Nusselt number in the 
laminar flow regime (see Appendix), the Nusselt 
number divided by the square root of the 
Reynolds number was plotted as a function of the 
Prandtl number. Inspection of the line drawn 
through the experimental data showed that in the 
range of Prandtl numbers between O-7 and 217, 
(z/Re1’3 increases with the Prandtl number 
raised to the O-4 power so that a generalized 
correlation as shown in Fig. 4 could be obtained. 
Using this power dependence with the Prandtl 
number, which is in close agreement with forced 
convection correlation for other geometrical 
configurations [8], the following empirical 
relations can be obtained from Figs. 3 and 4: 

Gr < 0.1 Re2 

ru = 0.43 R@ Pro.4 Re < 5 x lo5 (4) 
O-7 < Pr < 217 

and 

Nu = 0.066 
Gr < 0.1 Rea 

ReQW pf3.4 5 x lo5 < Re < 7 x lo6 

LO.7 < Pr < 7. 

As shown in Fig. 4, the preceding equations 
correlate the experimental data for convection 
heat transfer to or from spheres rotating in air, 
water, and oil within about 15 per cent over a 
Reynolds number range from 300 to 600 000 
provided normal free convection is negligible. 

The experimental results obtained when the 
rotating sphere was cooled in mercury did not 
fit the correlation obtained with fluids having 
Prandtl numbers the order of unity or larger. 
The data obtained in mercury (Pr = 0.024) over 
a range of Reynolds numbers between 70 000 
and 1 000 000 could be correlated, as shown in 
Fig. 3, by the empirical equation 

K = 0.178 Re0.375. (5) 

It may be noted that although the Reynolds 
numbers fell into the partially turbulent flow 
regime, the Nusselt number increased only 
with the 0.375 power of the Reynolds number. 
The reason for this deviation from the trend 
of the data for fluids with larger Prandtl numbers 
is not known. 
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Pr- PRANDTL NUMBER 

Frc. 5. Comparison OF experimental and theoretical results - ~l~el~~ vs. Pr. 

A comparison of the experimental results with 
average Nusselt numbers calculated from boun- 
dary-layer theory is shown in Fig. 5. Using a 
calculation procedure outlined in detail in the 
Appendix, the coefEcients C in the equation 
(Nf;/Re2’2) = Cf(Pr) were calculated for Prandtl 
numbers of about 3, 6, 22, 100, and 220 and a 
line faired through them. As pointed out by 
Singh [4], the series used in the theoretical 
solution converges only as long as Pr > 2. In 
practice, however, the convergence was found 
to be very poor for Prandtl numbers less than 
three. 

A comparison of the calculated curves with 
the experimental results shows that the Nusselt 
number predicted on the assumption of a 
uniform boundary-Iayer thickness agrees within 
30 per cent with the experimental value at 
Prandtl numbers larger than four, but deviates 
considerably from the experimental results at 
smaller values of the Prandtl number. The 
discrepancy between theory and experiment 
is believed to be the result of neglecting the 
thickening of the boundary layer with increasing 
angular distance from the equator in the 
analytical solution. For a given angular incre- 
ment more heat-transfer area is spanned near the 
equator than near the poles. Since the experi- 
mental measurements described in the following 
section indicate that the bounda~ layer thick- 
ness increases as one moves from the poles to- 
ward the equator, it appears that the assumption 
of a uniform boundary-layer thickness under- 

estimates the effective thermal resistance per 
unit angle, measured along a big circle in the 
vicinity of the equator. 

THE FLOW ~GR~~E~D BY A ROTATING 
SPHERE 

In the analytical solution for the heat-transfer 
coefficient by convection to or from a rotating 
sphere (see Appendix), the solution of the 
bounda~-layer flow equations constructed by 
Nigam [3] was used. In his solution Nigam 
assumed implicitly that 1. the flow is laminar over 
the entire surface of the sphere, 2. the thickness 
of the boundary layer from poles to equator is 
uniform over the entire sphere, and 3. the 
assumptions inherent in boundary layer theory 
do not break down at the equator. 

As shown in detail by Howarth [2], the 
boundary-layer equations for a rotating sphere 
degenerate in the vicinity of the poles into the 
same form as the equations for a rotating disk 
derived by von K&man 1121. On a rotating disk 
the boundary layer remains laminar at Reynolds 
numbers (based on the diameter) below IO6 and 
since in the experiments reported here the 
highest Reynolds number was 9 x lo5 the first 
assumption appeared to be reasonable except 
in the vicinity of the equator where, as will be 
discussed later in more detail, Sow separation 
takes place and the flow becomes turbulent. The 
second assumption is a mere hypothesis which, 
although not stated by Nigam, is implied in the 



CONVECTION HEAT TRANSFER AND FLOW PHENOMENA 887 

series expansion used by him. The third assump- 
tion is justified by Nigam on purely formal 
grounds by showing that the order of magnitude 
assumptions leading to the boundary-layer 
equations do not break down at the equator. 
This sort of argument, however, is not realistic 
for a physical system in which the flow conditions 
on which the boundary-layer assumptions are 
predicated may not exist. The third as well as the 
second assumption can, therefore, only be 
verified by experiments. 

The only experimental investigation of the 
flow engendered by a rotating sphere which has 
been reported heretofore was confined to a 
single Reynolds number. Kobashi [5] measured 
the velocity vector field by means of a hot wire 
and calculated from his measurements the tan- 
gential velocity components in the vicinity of a 
0.328 ft diameter sphere rotating at 3000 r.p.m. 
Unfortunately [5] gives no information about 
the external environment; assuming that the 
experiments were made in air at normal tempera- 
ture and pressure the experimental conditions 
correspond approximately to a Reynolds number 
of ten thousand. 

For this Reynolds number the measured 
velocity profiles exhibited certain similarities 
with the velocity profiles predicted by Nigam, but 
the agreement was quantitatively rather poor 
except on one point: Nigam’s theory predicts 
inflow into the boundary layer from the poles 
up to co-latitudes (measured from the pole) 
of 54.75” and outflow between co-latitudes of 
54.75” and the equator. Kobashi’s measure- 
ments indicated that a transition from inflow to 
outflow occurs at a co-latitude of 54.5”. Since 
Howarth’s solution does not predict any outflow 
near the equator, which is of course a physical 
necessity without which continuity cannot be 
satisfied, it appeared reasonable to use Nigam’s 
theory despite its shortcomings. In retrospect, 
however, the poor agreement between predicted 
and measured Nusselt numbers at Prandtl num- 
bers of the order of one (see Fig. 5), raised serious 
doubts regarding the tenability of Nigam’s 
assumptions as well as the reliability of Kobashi’s 
measurements. In order to gain further insight 
into the convection mechanism, it was therefore 
deemed desirable to investigate certain key 
features of the flow, e.g. the distribution of the 

boundary-layer thickness, the extent of inflow 
and outflow regions, and the flow interaction at 
the equator. 

EQUIPMENT AND EXPERIMENTAL TECHNIQUE 
FOR THE FLOW STUDIES 

The sphere used in the experimental flow 
investigations was an 8.50 in diameter black 
ebonite bowling ball which was suspended on a 
Q in diameter shaft from supports mounted in the 
ceiling. The bowling ball was dynamically 
balanced so that vibration and wobbling were 
reduced to a minimum. To simulate conditions 
of an infinite environment the shaft was extended 
30 in above the sphere because smoke visualiza- 
tion studies showed that this distance was 
sufficient to eliminate the influence of the pulleys 
on the flow pattern over the sphere. At its 
upper end the shaft was supported by precision 
bearings and driven by a pulley system with 
a small electric motor whose rotational 
speed could be controlled with a powerstat. 
The apparatus was attached to a steel frame 
and suspended from the ceiling as shown in 
Fig. 6. 

The speed of rotation of the sphere was 
measured with a Strobotac connected in series 
with a Strobolux. The velocity of the flow in the 
boundary layer was determined on the lower 
half of the sphere with a Flow Corporation 
HWB-2 hot wire anemometer in conjunction 
with a velocity direction finder which was speci- 
fically designed to determine the magnitude and 
direction of a velocity vector in space using the 
co-ordinate system shown in Fig. 7. 

The principal component of the velocity 
direction finder was a 90” arc section of 20 in 
radius. The end of the hot wire probe was 
mounted in two small bearings, so that the probe 
could be freely rotated about its longitudinal 
axis and its angular location be determined on 
a circular dial. The bearings were mounted on a 
block with two grooves which could slide on 
rails in the arc section. When in this arrangement 
the hot wire tip of the probe was placed at the 
center of the arc section, the tip remained 
stationary in space as the bearing supports 
were moved over the 90” interval of that section. 
The arc section containing the probe was 
mounted on a support which could be moved 
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FIG. 7. Co-ordinate system for rotating sphere. 

vertically and horizontally to any desired position 
by means of screw attachments. 

To make a velocity measurement the hot wire 
probe was inserted into the boundary layer on 
the sphere at a desired position and the end at 
which the stem of the probe was attached to the 
bearings was moved horizontally to one extreme 
or the other on the 90” arc section. In both ex- 
treme positions, i.e. 90” apart, the hot wire 
probe was rotated about its longitudinal axis 
until the galvanometer of the hot wire system 
indicated a maximum unbalance, thus indicating 
the angular position corresponding to the maxi- 
mum velocity in the plane in which the hot wire 
was located. Once the maximum velocity in two 
planes spaced 90” apart is known, it is possible 
to calculate the velocity vector in space since it 
must lie in both planes and must coincide with 
the line of intersection of the two planes. The 
magnitude and direction of the velocity could 
therefore be calculated from the experimentally 
measured values of the two velocities in the two 
planes of measurements. Additional details of 
the experimental technique, as well as the 
derivations of the equations necessary to calcu- 
late the direction and magnitude of a velocity 
vector in space are presented in [ 111. 

EXPERIMENTAL RESULTS OF THE FLOW 
STUDIES 

Fig. 8 shows in dimensionless form the tan- 
gential velocity component in the plane of a 
parallel as a function of distance from the 
surface of the sphere at 5”, 10” and 30” latitudes 
at a Reynolds number of 5.25 x 103. To con- 
struct these figures, it was necessary to determine 
first the boundary-layer thickness along a 
meridian S(0). This was done by defining the 
boundary layer thickness as that distance from 
the surface of the sphere at which the tangential 
velocity component in the plane of a parallel 
decreases to 2 per cent of the rotational speed 
(a Q sin 0) of the sphere surface and measuring 
the distance at which this condition obtained. 
Also shown in Fig. 8 are the tangential velocity 
profiles predicted by Howarth [2] and Nigam 
[3]. It should be noted that although two of the 
three measuring stations were located quite 
near the equator, there is remarkably close 
agreement between the experimental results and 
the velocity profile predicted by Howarth’s 
solution which was obtained by an expansion 
about the pole. 

Comparisons of the tangential velocity com- 
ponent profiles in planes of a parallel nearer the 
poles and the tangential velocity component in 
planes of a meridian did not show equally good 
agreement; this can be attributed mainly to 
limitations in the measuring equipment. 

On the basis of dimensionless velocity distri- 
butions such as those shown in Fig. 8 and in [5] 
it is, however, not possible to evaluate the agree- 
ment between experimental measurements and 
the predictions made on the basis of the theories 
such as those by Howarth and Nigam respec- 
tively. To determine the validity of a theoretical 
analysis, also the actual boundary-layer thickness 
must be compared with that predicted from 
theoretical considerations. Such a comparison 
is shown in Fig. 9 where the variation in the 
experimentally measured boundary layer thick- 
ness in a meridian plane along a big circle from 
pole to equator is compared with the predictions 
of Howarth and Nigam at a Reynolds number of 
5.25 x 10”. An inspection of this figure shows 
that the boundary-layer thickness predicted by 
Howarth’s analysis is in good agreement with 
the measured values, but that Nigam’s assump- 
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FIG. 8. Comparison of experimental and theoretical 
tangential velocity distribution in the plane of a 
parallel on a rotating sphere at a Reynolds number of 

5.25 x lo4 at latitudes of 5, 10, and 30”. 

H’M.-3L 

Cons yield much too small a boundary-layer 
thickness, except near the equator. This result 
explains at least in part why at Prandtl numbers 
of the order of unity the Nusselt number pre- 
dicted analytically was larger than the measured 
values--too small a boundary-layer thickness 
results in too steep a velocity or temperature 
gradient at the surface. 

The agreement between Howarth’s theory and 
the experimentally measured boundary layer 
thickness raised anew the question of the extent 
of inflow and outflow regions, since Howarth’s 
analysis fails to predict any outflow. Howarth 
attributed the cause of this failure in his solution 
to the limitations of the boundary-layer equa- 
tions which, he said, cease to describe the 
flow near the equator in the region of the inter- 
action between the two impinging layers from 
the upper and lower halves of the sphere. 

In view of the limitations in the accuracy of 
the measuring equipment available to the 
authors, it was not possible to deduce the 
radial velocity component from the total velocity 
vector with sufficient accuracy to determine the 
extent of the inflow and outflow regions over 
the sphere with confidence. Kobashi [5], who 
used more refined equipment, calculated the 
radial component from his measurements of the 
total velocity vector; but in view of the extremely 
small order of magnitude of this velocity com- 
ponent, its accuracy is very questionable. More- 
over, since the agreement between Nigam’s 
prediction and Kobashi’s measurements of the 
extent of the inflow and outflow regions had 
originally been a corner stone in the decision 
to use Nigam’s solution of the boundary-layer 
equations in the analysis of the convection heat 
transfer, it was deemed desirable to investigate 
the radial flow pattern over the sphere in a 
different and more direct manner. 

To obtain reliable results, the flow pattern 
about the sphere was studied visually in air by 
means of two slightly different types of flow 
visualization techniques. Although the tech- 
niques could not yield quantitative measures of 
the velocity, they did give reliable qualitative 
indications of the extent of the inflow and out- 
flow regions. 

In a series of tests smoke from a kerosene 
smoke generator was introduced into the air in 
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Nzgom (Rei.3) --- 

Howorth (Ref.2) - 
Expersment 0 

BOUNDARY LAYER THICKNESS IN 

FIG. 9. Comparison of experimental and theoretical 
distribution of boundary-layer thickness on a sphere 
rotating in an infinite environment at a Reynolds 

number of 5.25 ‘z: 10”. 

the vicinity of both poles. From there it was 
carried by the fan-like motion of the upper and 
lower halves of the sphere toward the equator, 
where the two streams met head on and then dis- 
charged into the room. In one series of tests 
the motion of the smoke was photographed in a 
conventional manner, with a movie camera 
placed some distance away from the sphere. In 
another series of tests pictures of the boundary 
layer and the separation region at the equator 
were obtained at various rotational speeds by 
placing a strong light source on one side of the 
sphere some distance away; the camera was then 
placed in such a manner that it mainly viewed 
light which barely grazed the sphere. Pictures 
obtained by this method clearly delineated the 
smoke filled boundary layer on the surface of 
the sphere, as shown in Fig. 10. It is apparent 
from an inspection of the photographs in Fig. 
10 that at Reynolds numbers below 5 x 10” no 
appreciable out-flow occurred from the boundary 
layer over the sphere except in a very narrow 
zone on both sides of the equator. It is further 
apparent that except for the narrow separation 
zone at the equator the boundary iayer was 
laminar over the entire sphere ; it remained 

laminar over most of the sphere even when 
the rotational speed was increased, but increas- 
ing the Reynolds number broadened the 
separation zone at the equator. 

The extent of separation zone about the 
equator was obtained quantitatively by means of 
the photographic methods described above and 
the results are shown in Fig. 11 where the width 
of the separation zone about the equator is 
plotted in degrees as a function of the Reynolds 
number. An inspection of this figure shows that 
at Reynolds numbers of about 5 ,,: IO”, the 
Reynolds number at which a break in the heat- 
transfer characteristics was observed, the separa- 
tion zone begins to widen and thus introduces 
turbulence into the flow in the vicinity of the 
equator. The results of these flow studies are, 
therefore, in agreement with deductions from the 
heat-transfer results and serve to explain the 
overall convection characteristics of rotating 
spheres. 

ix 
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FIG. 11. Extent of turbulent separation zone in the 
vicinity of the equator as a function of Reynolds 

number. 



In passing it may be of interest to note some 
observations regarding the mechanism by which 
the laminar flow underwent transition to turbu- 
lent flow. Direct visual observations, as well as 
movies taken of the smoke introduced into the 
boundary layer from both poles, showed that 
before transition actually occurred small turbu- 
lent spots originated in the flow. These spots 
broke up the laminar flow locally and closely 
resembled visually the formation of bubbles in a 
subcooled boiling liquid or the appearance of 
solar flares on the sun. The actual growth 
pattern of these turbulent spots was almost 
explosive in nature, but did not in all cases pro- 
duce an immediate transition of the entire flow. 
Additional studies of the flow in the transition 
region would be desirable. 

sphere proposed by Howarth [2] predicts the 
velocity field closely despite its failure to predict 
outflow near the equator. 

ACKNOWLEDGEMENT 
Support of the National Science Foundation under 

Grant Number G-19569 is gratefully acknowledged. 

CONCLUSIONS 

1. At Reynolds numbers below 5 x lo5 the 
average Nusselt number for a sphere rotating in 
an infinite environment is given by G = 0.43 
Re0’5 Pro.* in the range of Prandtl numbers 
between 0.7 and 217. 

2. At Reynolds numbers between 5 x lo5 and 
7 x lo6 the average Nusselt number for a 
sphere rotating in an infinite environment is 
given by E = 0.066 Re0’67 Pro.* for Prandtl 
numbers between 0.7 and 7. 

3. At Reynolds numbers below 5 x lo5 the 
flow induced by a sphere rotating in an infinite 
environment is laminar except for a small 
region in the vicinity of the equator where the 
boundary layers from the two halves of the 
sphere meet. 

4. The turbulent interaction zone in the 
vicinity of the equator is less than 2” latitude in 
width at Reynolds numbers below 5 x 105, but 
increases linearly with increasing Reynolds 
number as shown in Figs. 10 and 11. 
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5. Theoretically predicted values of the Nusselt 
number, based on a boundary-layer model 
assuming a constant boundary-layer thickness, 
agree reasonably well with experimental measure- 
ment in the range of Prandtl numbers between 
4 and 217, but deviate considerably from the 
experimental results at Prandtl numbers of the 
order of unity. 

APPENDIX. A THEORETICAL ANALYSIS OF 
THE AVERAGE NUSSELT NUMBER FOR A 

SPHERE ROTATING IN AN INFINITE 
MEDIUM.* 

The flow engendered by a sphere rotating 
about a diameter in otherwise undisturbed fluid 
has been investigated by Nigam [3] who con- 
structed solutions for this problem in the form 

6. In the laminar flow regime the solution of 
the boundary-layer equations for a rotating 

* The derivation of the equations for the temperature 
profile follow the method of [4]. They are presented here 
in detail because there are some heretofore uncorrected 

_ misprints in the original paper. 
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of power series, Subsequently, the temperature 
distribution in the fluid associated with the 
velocity field found by Nigam [3] was investi- 
gated by Singh [4] for a rotating sphere at 
a uniform temperature. 

Assuming that there is no imposed pressure 
gradient or external body force, that the flow is 
laminar and steady, and that the derivatives with 
respect to 4 vanish as a result of symmetry, the 
conservation equations of continuity, momen- 
tum, and energy for a sphere uniformly at a 
temperature Ts rotating in an infinite medium 
at temperature TW, can, subject to conventional 
boundary layer simplifications 12, 41, be written 
as 

where u, u, and u’ are the velocity components in 
the r, 8, and 4 directions (Fig, 7), T is the tem- 
perature of the fluid, p is the density, and 
v is the kinematic viscosity. 

The boundary conditions are: 

at Y = a; T = T,, u = 0, P = 0, 

and w = aa sin B (5A) 

atr= m;T=Tm,r~=O,w=O. 

The flow functions satisfying equations 
(lA)-(4A) and the boundary conditions (SA), as 
proposed by Nigam, are 

u = + (vL?)~/~ (2 -- 3 sin2 S) 

(HI + sin2 %H, + sin” %H, f . . .) 

v=aQcos%(sin%F, 1 

+ sin3 % F3 + sin5 % Fe + . . .) cw 

and 

w = aQ sin % (G, + sin2 % G3 

+ sinP % Gs _t . . .). 

A. SULLIVAN and S. N. SINHA 

In (6A) the F’s, G’s and H’s ate functions of 
7 = (!Z?/V}“~~ (r - a), and are given by 

Fl== C,s(l +2s)(1 -s)z 

- ;Lsr (1 -_( $)2 

F3 = C,s(l + 2s)(l -s)” 

F5 = C,s(l + 2s)(l -- sJz 

G,= +(2+s,(t -Q2 

G3 = C$ (1 + 2s) (1 - s>2 

G, := C,s(l + 2s)(l - sf’J 

-I?, = 4.2822 ‘P - 7-27 I f” . UGf 

+ 4.5432 .sJ -- O-9689 ss 

--Jig = 2.0855 s2 - 3.1283 So + 1+&84 s5 

--H3 = 2*6434s2-3.9651 So + 2.1147s” 

where 

rl = ~8, C, = 1.5183, C2 = O-3732, 

C3 = 0.4257, C, = 0.2532, C, = O-1949, 

and 6 = 2.794. 

Substituting the above flow functions in the 
energy equation (4A), one finds [4] that the 
temperature distribution in the fluid is satisfied 
by the expression 

c,T := c,T,: + a2Q2 (Ml + sin2 % M3 

+ sin” % MS + . . *). @A) 

If 8, is the thickness of the thermal boundary 
layer, the boundary conditions are: 

M, (0) = r,(I?s - T&M22, M, (0) = 1 

M5 (0) :-= 0 at T= 0, on the sphere surface / 

and MI (8,) = 0, M, (6,) = 0, 

1 

(9A) 
MS (6,) := 0, at the edge of the thermal 

boundary layer 7 = 8,. 

To ensure a smooth and continuous transition 
at the outer edge of the temperature layer it is 
necessary that 

M; (8,) = 0, M; (6,) = 0, M; (6,) = 0 at 7 L=: 6,. 

WA) 
The functions M,, MB, and &I; satisfying the 

above boundary conditions are: 
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M, = ff,s,(l + 2S,)(l - s# + (I.45875 - 1‘75050 c, 

- !E~!z +j (1 - s&2 U2A) 
- 0.9396 C,) Pr a3K2R 

+ (0.4698 C, - O-729375) Pr s5K2S 

MS = b,s, (1 + 2S,) (1 - SJ2 e2= -5Cz6M$6C,6M 

(204 

+ ELi6e S:@ (1 - s1)2 (13A) e3 = -5 C,6P + i a3Q + 6 C&iP 

where 7 = s,S, and Pr is the Prandtl number. 
The constants 6,, aI, and bI are determined J 

from the following equations : 

1825964 S: - 70 S: + 10.7355 8; 
The capital letters in the above expressions 

*(=-I\ (20A) are the following polynomials in K = (~~/~) 

- 0.5974 sp = pr L3Lv (14A) 

jt (F;* + G;* + 3 M,F; - 4 M,F, 
3=K-663$4K.1+%5 

5 

- 4 M,F,) drl = Ej$l (15A) -24K$% 

and 

& (F;? - 2 F;F; - 2 G;G; - 5 FIM, - 5 MIFa C =K2+2K3-;K4+ 14K5 

- M;(O) 
+ 6 F,W + 6 F&f3 + 6 F,M,) drl = prp 

U6N 

- 14K6j- TK7 

where primes denote di~erentiations with respect L> = ; K3 - 6 K4 + 10.4 K5 

to ‘?* 

Substituting the expressions for the F’s, G’s 
and M’s in equations (15A) and (16A) yields 

-8K6$ ‘$7 

after integrating 9 3 9 

& + &P + &Jr = 0 (17A) 
L =4K-2K3+20K5 

el + e,p + e3a1 -t- e&, = 0 U8A) 1 9 I 

where 
M =5Ks- ioK4+20K5 

T, - T, p = ._~~~~~_ 

and 

(19A) N -_ !$3- ;K4+&KP 

dI = Cp - C,SC + f” D + f 
, 1 9 1 

P = isKa- 140K4+36K5 

+ I-167 Pr s2K2R - 0.5835 a5K2S 1 1 1 

dz = 3 CJiZ - 1.5 S3N - 4 C,SM 
R =,KZ-~K3f126K~ 

d, = - 4 C,6P $ 2 S3Q - & S 
1 1 1 

lee 

=: liiS KS - 84 K4 + 252 K5 

e,=~~_~c,sC+!T~_-~~ u +-K+4+ 

+ 2 C&w -I- 2 v (20A) _ ‘3” K6+ !_+t 

(21 Al 
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10 
Y =K+ 3.K”-2KK4 (214 

vK5+;K6 9 

1 9 1 

Z = K2 - 
5 7O 

K4 - 
5 

K5. J 

The constant a, and b, can be evaluated from 
equations (17A) and (18A), or 

& dz a,=-----p 
d3 d, 

To obtain the mean value of the temperature 
gradient over the sphere we note that 

dT dT dn 

0t 

t? = 41:: (M; + M; sin2 8 + M; sin4 0). 
dr 

At the surface of the sphere the mean value of 
the radial temperature gradient (d7’/dr)* is 

M; sin4 0) dA, 
I 

a252512 

= ,,,,,; 

2 8 , 
M;(0)+1M;(O)+15M,(O)+... . I 

(23A) 

The average unit surface convective conduc- 
tance h is defined 

I; = -kf (dT/dr)m, at surrace/(Ts - Too) (24A) 

so that the average Nusselt number can be ex- 
pressed in the form 

z = 2h a/kf 

= -2a (dT/dr)m, at surracJ(Ts - Tm). (25A) 

Combining equations (23A) and (25A) yields 

Nu_ ~~ 
2a Q5/2a2 

- -~~ 
T< ~ T, cpv112 

M;(O)+;M;(fl) 

f p5 M; (0) + . . . 1 . PA) 
Substituting the expressions for MI, M;, M; and 
the constants (I~ and bl, the preceding expression 
takes on the form 

[ 

a2Q2 
Nu = Re1!2 X(h) + Y(h) cicTimLm Tp,] (274 

where 

Re = 4a2il/v 

Table I 

K 81 Pr A4 N P Q Z 

0.8 2.2352 3.08711 0.091721 0.0157486 0.0254368 0.0052818 om5s93 
0.6 1.6764 5.77 0.059226 0.008836 0.017829 0.00324 0.039786 
0.35 0.9779 21.758 0.02283745 OQO2420 1 om73505 OX@0962 0.02246442 
0.2 0.5588 98.43 0@07811 O~ooo538 0.00257639 0.00022194 ow773 
0.15 0.4191 220.71 O+lO44388 OWO2399 0.00146961 omoO9955 0.0044198 

61 e2 e3 

2.2352 -0.08887466 -0.092384 
1.6764 -0.057387 - 0.08995 
0.9779 -0.022128 -0.057458 
0.5588 - 0.007568 -0.026417 
0.4191 -0.0043012 -0.01658 

e4 4 4 XW) 

044675117 - 0.8228047 -0.3461411 14009939 
0.345175 -0.0297782 -0.26457758 1.26628 
0.171137 0.1114606 -0.129752678 1.594112 
0.069221 0.04819458 - 0.0570499 3.375 
0.0417486 0.0298841 -0.03143597 3.561362 
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and (27A) is within an accuracy of 1 per cent given 
by the relation 

G = X(Pr) Re112. (284 
Assuming values of K, the function X(Pr) was 
calculated for values of the Prandtl number 

For the ranges of temperatures, sphere sizes, and between 3 and 220. At lower values of the 
rotational speeds used in this investigation the Prandtl number the convergence of the series is 
quantity asL?2/cp (T’ - Tm) was of the order of questionable. The results of this analysis are 
10e3. Since X(Pr) and Y(Pr) are of the same order tabulated in Table 1 and compared with the 
of magnitude, the Nusselt number of equation experimental data in Fig. 5. 

R&m&-L’6coulement engendrk par une sphere en rotation et les &changes thermiques convectifs 
vers ou B partir d’une telle sph&re ont CtC 6tudi6s exptrimentalement et thkoriquement pour des 
domaines de nombres de Reynolds allant de 0 & 9. 105, des nombres de Grashof de 7. lo4 g 3. lOa et 
des nombres de Prandtl de 0,024 B 217. Pour des nombres de Prandtl compris entre 4 et 217 et des 
nombres de Reynolds infkrieurs & 5. 104, le nombre de Nusselt moyen, qu’il s’agisse de chauffage ou 
de refroidissement, est en bon accord avec les rCsultats du calcul thdorique fond6 sur la solution des 
dquations de la couche limite obtenue en supposant que 1’6paisseur de la couche limite est constante 
autour de la sphkre. Une &de dttaill6e de 1’Ccoulement de la couche limite, au moyen d’un fil chaud 
et par diffkrentes m&hodes de visualisation, a montre toutefois que l’epaisseur de la couche limite 
croit avec la distance angulaire g partir des pBles et qu’au voisinage de l’kquateur, oti les couches 
limites des deux htmisphkres de la sphere en rotation se rejoignent, il se produit un dCcollement t&s 
complexe. L’Ctendue de la region de decollement a CtC dtterminte et on a observC quelques phCnom&nes 

de transition inhabituels. 

Zusammenfassung-Die urn eine rotierende Kugel entstehende StrGmung und der konvektive Wlrme- 
transport zu oder von der Kugel wurden experimentell und theoretisch im Bereich der Reynoldszahlen 
von 0 bis 9.105, den Grashofzahlen von 7*104 bis 3.109 und den Prandtlzahlen von 0,024 bis 217 
untersucht. Fiir Prandtlzahlen zwischen 4,0 und 217 und Reynoldszahlen kleiner als 5. IO4 zeigte 
sich die mittlere Nusseltzahl fiir Kiihlung wie such fiir Heizung gut iibereinstimmend mit dem Ergebnis 
einer theoretischen Analyse, die auf einer LGsung der Grenzschichtgleichungen mit konstant angenom- 
mener Grenzschichtdicke urn die Kugel beruhte. Eine genauere Untersuchung der Grenzschicht- 
strijmung mit Hilfe eines Hitzdrahtes und verschiedener Methoden der Sichtbarmachung zeigte 
jedoch, dass die Grenzschichtdicke mit der Winkelweite von den Polen zunimmt und dass in der 
Aquatorgegend, wo sich die Grenzschichten der oberen und der unteren Hllfte der rotierenden 
Kugel treffen, eine komplexe StrGmungsablGsung auftritt. Die Ausdehnung des Ablijsungsbereiches 

wurde bestimmt und einige ungewiihnliche Ubergangsphanomene wurden beobachtet. 

AHHOTa~WG-3KCIIepkiMeIITanbHo Ii TeOpeTWIeCKLI HCCJIeAOBaJIHCb KOHBeKTHBHbIti TenJIO- 

06MeH nOBepXHOCTI4 BpaIL(aIOLIIerOCH IIIapa EI BbI3BaHHOe BpaIIJeHHeM TeYeHHe CpeAbI B npe- 

Aenax wcen PeI%IOnbACa OT 0 ~0 9 x 105, rpaCrO@a OT 7 x lOa II npaHATxR OT 0,024 ~0 
217. HafiAeHo,~~o &m YIICeJI HpaHATnH OT 4,0 ~0 217 H wcen Pef%HOnbACa MeHee 5 x lo4 
cpeAHeerincn0 HyccenbTaKaIr~nrloxJra~~eHHR,TaKliAnRHarpesaHHFIxopoluocornacyeTcR 

c pe3ynbTaToM TeopeTmecKoro aHamina, ocHoBaHHor0 Ha peruemnr ypaBHeH5d-i norpaaas- 

HorO CJIOFI IIIapa npH yCJIOBLIM paBHOMepHOli TOJIIIJIIHbI CJIOfI. OAHaKO, AeTaJIbHOe HCCJIeAO- 

BaHLle TeYeHMFI B nOrpaHHYHOM CJIOe C nOMOIIJbIO MeTOAa HarpeTOti IIpOBOJTOKIi II ApyrliX 

cnoco6oB BH3yaJIII3a~LIM nOKa3aJI0, 'IT0 TOJImkIHa nOrpaHWIHOr0 CJIOR B AetiCTBIlTeJIbHOCTll 

~o3pacTaeTcyBene~e~~re~yr~oBoropaccTo~~~Fio~no~~coB.KpoMeToro,~6~~3~3KBaTopa, 

r~ecmIKaIoTc~rrorpamwmecno~rsepxHeron mmHer0 nonymapsti,meeT MecTo cnoxtanfi 

OTpbIB nOTOKa. OnpeAeneH pa3Mep 06naCTH OTpbIBa. B OIILdTaX Ha6JIIOAanIfCb HeO6bIvHbIe 

m3neHm nepexona. 


