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Abstract-—The flow engendered by and the convection heat transfer to or from a rotating sphere
have been investigated experimentally and theoretically over ranges of Reynolds numbers from zero
to 9 x 10°, Grashof numbers from 7 x 10* to 3 x 10% and Prandtl numbers from 0-024 to 217. For
Prandt] numbers between 4-0 and 217 and Reynolds numbers below 5 x 10* the average Nusselt
number for cooling as well as heating was found to be in reasonably good agreement with the result of
a theoretical analysis based on a solution of the boundary-layer equations in which the boundary-
layer thickness around the sphere was assumed to be uniform. A detailed study of the boundary-layer
flow by means of a hot wire and several visualization methods showed, however, that the thickness
of the boundary layer increases with angular distance from the poles and that in the vicinity of the
equator where the boundary layers from the upper and lower halves of a rotating sphere meet, a
complex flow separation takes place. The extent of the separation region was determined and some
uynusual transition phenomena were observed.
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Subscripts

¢, convective;

f, fluid;

r, radiative;

s, sphere.

Dimensionless parameters
Gr, Grashof number, g8(Ts — Tw)D3/vs;
Nu, average Nusselt number, h.Ds/kr;
Pr, Prandtl number, (cpu/k)s;
Re, Reynolds number, £2D?/v;;
X, Nu/Re'.

INTRODUCTION

THE flow and convection heat-transfer charac-
teristics of a sphere rotating about a diameter
in an otherwise undisturbed medium are of
interest in fluid mechanics, meterology, astro-
physics and aeronautical engineering. The first
study of such a system was undertaken by Sir
George Stokes in 1845. Although Stokes was
mainly concerned with the pressure distribution
around a rotating sphere, he also gave a quite
accurate description of the flow mechanism:
“The sphere acts like a centrifugal fan, the
motion at a distance from the sphere consisting
of a flow outwards from the equator and in-
wards towards the poles, superimposed on a
motion of rotation”™ {1].

It was not until more than a century later that
the problem received again serious attention.
Using boundary-layer approximations the flow
engendered by a rotating sphere has recently
been investigated theoretically by Howarth [2]
and Nigam [3], and the temperature field in the
vicinity of a heated sphere has been studied by
Singh [4] in the laminar flow regime. Experi-
mental measurements of velocity profiles have
been reported by Kobashi [5] and the heat
transfer by convection from a heated sphere
rotating in air has been investigated experi-
mentally by Nordlie and Kreith [6].

This paper corrects and extends Singh’s
analysis to permit theoretical calculations of the
average heat-transfer coefficient for a rotating
sphere, presents experimental data of convection
heat-transfer coefficients to and from rotating
spheres over wide ranges of Reynolds and
Prandtl numbers, compares the analytical and
experimental results, and presents some addi-
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tional measurements of boundary-layer velocity
profiles, including the extent of a turbulent
separation zone which was observed in the
vicinity of the equator. Motion pictures of the
flow pattern were taken with the aid of a smoke
type flow visualization technique and they are
available on loan from the senior author.

EQUIPMENT AND EXPERIMENTAL TECHNIQUE
FOR THE HEAT-TRANSFER MEASUREMENTS

The heat-transfer tests were performed with a
type 2017-T-4 solid aluminum sphere, 6 inches in
diameter, and with a smaller 224K aluminum-
bronze sphere, 2 inches in diameter. The construc-
tion of these spheres is shown schematically in
Fig. 1 and a photograph of the experimental
installation is shown in Fig. 2. Each sphere was
attached to a vertical hollow shaft which was
driven at the top by a small motor whose
rotational speed could be adjusted and controlled
between 30 and 2500 r.p.m. by means of a power-
stat connected to a voltage regulator. The tem-
perature of the sphere was measured by means
of a copper—constantan thermocouple which was
peened near the center into the larger aluminum
sphere, but immersed into a pool of mercury
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F1G. 1. Schematic sketch showing construction of the
6 in diameter aluminum sphere.



FiG. 2. Photograph of the experimental equipment used in heat-transfer tests with 2 in. diameter sphere,
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F16. 6. Photograph of velocity magnitude and direction finder with hot wire probe and experimental
equipment used in flow studies.



Re = 3.4 x10* Re = 5.75 x 10°

Re = 79x10° Re = 10.5 x 10*

Fic. 10. Smoke photograph of the boundary-layer interaction in the vicinity of the equator at Reynolds
numbers of 34 x 10% 525 x 10%, 79 x 104 and 105 x 10%
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inside the smaller aluminum-bronze sphere.
The rotating copper lead of the thermocouple
was connected to a slipring-brush arrangement
equipped with an automatic timer which
periodically lifted the spring-loaded brushes off
the rotating slipring to prevent excessive fric-
tional heating. Galling between the copper slip-
rings and copper brushes was prevented by
plating the ends of the brushes with a layer of
silver which was sufficiently thin to avoid
thermocouple effects. The constantan lead
of the thermocouple was taken out in the center
at the upper end of the shaft where the tip of a
small, springloaded constantan cone which was
connected to a stationary constantan wire made
contact with a conical indentation in the
rotating constantan wire which was attached to a
nylon bushing in the shaft. In addition to the
sphere temperature also the temperature of the
cooling or heating medium was measured by
means of a thermocouple and both temperatures
were recorded as a function of time during each
test on an automatic strip-chart temperature
recorder.

The shaft supporting the sphere was made as
small as possible to reduce heat conduction
along it. Some fin action of the shaft was
unavoidable, but a calculation of the maximum
heat loss from the sphere along the shaft showed
that it was less than 1 per cent of the total heat
loss even under the most unfavorable test
conditions.

The experimental technique is described in
detail in [6] and [7]. Briefly, before each test the
sphere was heated to about 250°F in a radiant
type heating box which could be slipped over it
from below. After the desired initial temperature
had been reached, the motor was turned on, the
speed was adjusted to the desired value, the
sphere was immersed in the appropriate medium,
and the temperature-time histories of the sphere
and the medium were recorded on an automatic
strip-chart temperature recorder. It was known
from previous experiments [6] that the internal
thermal resistance of a small metal sphere is so
small compared to the convective thermal resis-
tance between the surface of the sphere and its
environment that the sphere may be treated as a
lumped parameter system without introducing
an appreciable error. The overall average heat-
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transfer coefficient could, therefore, be deter-
mined by means of a transient technique
described in [6] and [8], which gives the equation

| _ (@] matac (dTifdn)
¢ 47Ta2(Ts—Tm)

cspsa [ dTx(r)/dt
T3 [Ts(t) - TQJ O

for a sphere. The slopes of the sphere tempera-
ture versus time curves, d7s/d¢, could be deter-
mined numerically from the experimental data
at any time ¢. But in order to facilitate the reduc-
tion of the experimental data and to maintain
uniformity of the physical properties in all tests,
the slope of the temperature versus time curve
was evaluated for each test at that instant when
the arithmetic mean between the sphere tem-
perature and the environment temperature was
100°F. A few spot checks at different tempera-
tures showed that this procedure was satisfac-
tory.

The average overall heat-transfer coefficient,
which is the value determined by the experiments,
is the sum of the average convection heat-transfer
coefficient A, and the radiation heat-transfer
coefficient A, or

b= he + b, @)

The contribution of radiative heat transfer to the
total rate of heat transfer was appreciable only
for tests in air. For these tests the radiation heat-
transfer coefficient can be expressed in the form

hy = eo(T2 4 T2) (Ts + Tw) )

where T is the value of the sphere temperature
at that time in the cooling process at which
(dT3/dr) is evaluated. The convection heat-
transfer coefficient was then obtained by sub-
tracting the appropriate value of h, from £
according to (2). For tests with water, oil, and
mercury the radiation correction is negligible.
Whereas tests in air could be made with the
entire room as the environment, for tests with
water, oil, and mercury, a finite container
had to be used. In order to make sure that the
container would be sufficiently large so that its
walls would not interfere with the flow which
would exist in a quasi infinite environment, a
series of tests were made with the sphere rotating
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first in the room and then inside the container
which was later used for the tests with liquids.
In no case did the heat-transfer coefficients
obtained in these tests differ from each other at
similar Reynolds numbers by more than 2 per
cent, which is well within the accuracy of the
experimental results. It may therefore be assumed
that the test results for air as well as for water,
oil, and mercury correspond to conditions which
would obtain in an infinite medium.

EXPERIMENTAL RESULTS OF THE HEAT-
TRANSFER EXPERIMENTS*

Cooling tests were performed in air, water, and
oilt with the larger as well as with the smaller
sphere, in mercury only with the smaller sphere,
and heating tests were performed with the smaller
sphere alone in water. All test results were
reduced to appropriate dimensionless numbers
in which the physical properties were evaluated
at the arithmetic mean between the temperature
of the sphere and the temperature of the sur-
rounding medium.

* A detailed tabulation of the data and the experi-
mental results can be found in [7] and [9].

+ The oil was Spindura BB of A.P.I, gravity 31, kindly
supplied by the Texaco Company.
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Experiments with a rotating cylinder [10] and
a rotating sphere [6] under conditions where
both free and forced convection are significant
have shown that free convection effects become
negligibly small when the Grashof number is
10 per cent or less than the square of the Rey-
nolds number. According to this criterion
gravitationally induced free convection could be
neglected in all tests reported here so that the
Nusselt, Reynolds, and Prandti numbers were
the only variable parameters.

The experimental results are shown in Fig. 3
where the average Nusselt number h.D/k; is
plotted as a function of the rotational Reynolds
number £2D2/v; for tests with both spheres in oil,
water, air, and mercury. An inspection of the
lines faired through the data shows that at
Reynolds numbers below about 5 x 10? the
Nusselt number for oil, water, and air increases
with the square root of the Reynolds number. At
Reynolds numbers above 5 x 10° the Nusselt
number for water and air is proportional to
Re%%7, but in this range no data could be ob-
tained with the oil because of its high viscosity.

As will be shown in more detail later on, the
change in the functional relationship between

Nuand Re at Re of 5 % 107 is due to a spreading
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FiG. 3. Experimental results of heat-transfer tests—average Nusselt number vs. Reynolds number for
air, water, oil, and mercury.
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FiG. 4. Cotrelation of experimental results— Nu Pro*Y/Re vs. Re.

of a turbulent separation zone in the vicinity
of the equator. At Reynolds numbers below
5 x 10° the separation region was confined to
less than 2° on both sides of the equator and the
flow over the rest of the surface of the sphere
was laminar.

In order to obtain a generalized correlation
of the type Nu = f (Re, Pr) and to compare the
experimental results with theoretical calcula-
tions for the average Nusselt number in the
laminar flow regime (see Appendix), the Nusselt
number divided by the square root of the
Reynolds number was plotted as a function of the
Prandtl number. Inspection of the line drawn
through the experimental data showed that in the
range of Prandtl numbers between 0-7 and 217,
(Nu/ReY?) increases with the Prandtl number
raised to the 0-4 power so that a generalized
correlation as shown in Fig. 4 could be obtained.
Using this power dependence with the Prandtl
number, which is in close agreement with forced
convection correlation for other geometrical
configurations [8], the following empirical
relations can be obtained from Figs. 3 and 4:

Gr < 0-1 Re?
Re < 5 x 108
07 < Pr < 217

Nu = 0-43 Re®* Prot @

and
Vi — 0066 {Gr<0'1 Re?
Re087 ppoa< 5 X 10° < Re < 7 x 108
107 <Pr<T.

As shown in Fig. 4, the preceding equations
correlate the experimental data for convection
heat transfer to or from spheres rotating in air,
water, and oil within about 15 per cent over a
Reynolds number range from 300 to 600 000
provided normal free convection is negligible.

The experimental results obtained when the
rotating sphere was cooled in mercury did not
fit the correlation obtained with fluids having
Prandtl numbers the order of unity or larger.
The data obtained in mercury (Pr = 0-024) over
a range of Reynolds numbers between 70 000
and 1 000 000 could be correlated, as shown in
Fig. 3, by the empirical equation

Nu = 0-178 Re®3%, 3)

It may be noted that although the Reynolds
numbers fell into the partially turbulent flow
regime, the Nusselt number increased only
with the 0-375 power of the Reynolds number.
The reason for this deviation from the trend
of the data for fluids with larger Prandtl numbers
is not known.
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Theoretical Prediction
(See Appendix)
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Fig, 5. Comparison of experimental and theoretical results — Nu/Re'/? vs. Pr.

A comparison of the experimental results with
average Nusselt numbers calculated from boun-
dary-layer theory is shown in Fig. 5. Using a
calculation procedure outlined in detail in the
Appendix, the coefficients C in the equation
(Nu/Reé*?) = Cf (Pr) were calculated for Prandtl
numbers of about 3, 6, 22, 100, and 220 and a
line faired through them. As pointed out by
Singh [4], the series used in the theoretical
solution converges only as long as Pr > 2. In
practice, however, the convergence was found
to be very poor for Prandtl numbers less than
three.

A comparison of the calculated curves with
the experimental results shows that the Nusselt
number predicted on the assumption of a
uniform boundary-layer thickness agrees within
30 per cent with the experimental value at
Prandtl numbers larger than four, but deviates
considerably from the experimental results at
smaller values of the Prandtl number. The
discrepancy between theory and experiment
is believed to be the result of neglecting the
thickening of the boundary layer with increasing
angular distance from the equator in the
analytical solution. For a given angular incre-
ment more heat-transfer area is spanned near the
equator than near the poles. Since the experi-
mental measurements described in the following
section indicate that the boundary layer thick-
ness increases as one moves from the poles to-
ward the equator, it appears that the assumption
of a uniform boundary-layer thickness under-

estimates the effective thermal resistance per
unit angle, measured along a big circle in the
vicinity of the equator.

THE FLOW ENGENDERED BY A ROTATING
SPHERE

In the analytical solution for the heat-transfer
coefficient by convection to or from a rotating
sphere (see Appendix), the solution of the
boundary-layer flow equations constructed by
Nigam [3] was used. In his solution Nigam
assumed implicitly that 1. the flow is laminar over
the entire surface of the sphere, 2. the thickness
of the boundary layer from poles to equator is
uniform over the entire sphere, and 3. the
assumptions inherent in boundary layer theory
do not break down at the equator.

As shown in detail by Howarth [2], the
boundary-layer equations for a rotating sphere
degenerate in the vicinity of the poles into the
same form as the equations for a rotating disk
derived by von Kdrmadn [12]. On a rotating disk
the boundary layer remains laminar at Reynolds
numbers (based on the diameter) below 10% and
since in the experiments reported here the
highest Reynolds number was 9 x 10° the first
assumption appeared to be reasonable except
in the vicinity of the equator where, as will be
discussed later in more detail, flow separation
takes place and the flow becomes turbulent. The
second assumption is a mere hypothesis which,
although not stated by Nigam, is implied in the
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series expansion used by him, The third assump-
tion is justified by Nigam on purely formal
grounds by showing that the order of magnitude
assumptions leading to the boundary-layer
equations do not break down at the equator.
This sort of argument, however, is not realistic
for a physical system in which the flow conditions
on which the boundary-layer assumptions are
predicated may not exist. The third as well as the
second assumption can, therefore, only be
verified by experiments.

The only experimental investigation of the
flow engendered by a rotating sphere which has
been reported heretofore was confined to a
single Reynolds number. Kobashi [5] measured
the velocity vector field by means of a hot wire
and calculated from his measurements the tan-
gential velocity components in the vicinity of a
0-328 ft diameter sphere rotating at 3000 r.p.m.
Unfortunately [5] gives no information about
the external environment; assuming that the
experiments were made in air at normal tempera-
ture and pressure the experimental conditions
correspond approximately to a Reynolds number
of ten thousand.

For this Reynolds number the measured
velocity profiles exhibited certain similarities
with the velocity profiles predicted by Nigam, but
the agreement was quantitatively rather poor
except on one point: Nigam’s theory predicts
inflow into the boundary layer from the poles
up to co-latitudes (measured from the pole)
of 54-75° and outflow between co-latitudes of
54-75° and the equator. Kobashi’s measure-
ments indicated that a transition from inflow to
outflow occurs at a co-latitude of 54-5°. Since
Howarth’s solution does not predict any outflow
near the equator, which is of course a physical
necessity without which continuity cannot be
satisfied, it appeared reasonable to use Nigam’s
theory despite its shortcomings. In retrospect,
however, the poor agreement between predicted
and measured Nusselt numbers at Prandtl num-
bers of the order of one (see Fig. 5), raised serious
doubts regarding the tenability of Nigam’s
assumptions as well as the reliability of Kobashi’s
measurements. In order to gain further insight
into the convection mechanism, it was therefore
deemed desirable to investigate certain key
features of the flow, e.g. the distribution of the
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boundary-layer thickness, the extent of inflow
and outflow regions, and the flow interaction at
the equator.

EQUIPMENT AND EXPERIMENTAL TECHNIQUE
FOR THE FLOW STUDIES

The sphere used in the experimental flow
investigations was an 8-50 in diameter black
ebonite bowling ball which was suspended on a
# in diameter shaft from supports mounted in the
ceiling. The bowling ball was dynamically
balanced so that vibration and wobbling were
reduced to a minimum. To simulate conditions
of an infinite environment the shaft was extended
30 in above the sphere because smoke visualiza-
tion studies showed that this distance was
sufficient to eliminate the influence of the pulleys
on the flow pattern over the sphere. At its
upper end the shaft was supported by precision
bearings and driven by a pulley system with
a small electric motor whose rotational
speed could be controlled with a powerstat.
The apparatus was attached to a steel frame
and suspended from the ceiling as shown in
Fig. 6.

The speed of rotation of the sphere was
measured with a Strobotac connected in series
with a Strobolux. The velocity of the flow in the
boundary layer was determined on the lower
half of the sphere with a Flow Corporation
HWB-2 hot wire anemometer in conjunction
with a velocity direction finder which was speci-
fically designed to determine the magnitude and
direction of a velocity vector in space using the
co-ordinate system shown in Fig. 7.

The principal component of the velocity
direction finder was a 90° arc section of 20 in
radius. The end of the hot wire probe was
mounted in two small bearings, so that the probe
could be freely rotated about its longitudinal
axis and its angular location be determined on
a circular dial. The bearings were mounted on a
block with two grooves which could slide on
rails in the arc section. When in this arrangement
the hot wire tip of the probe was placed at the
center of the arc section, the tip remained
stationary in space as the bearing supports
were moved over the 90° interval of that section.
The arc section containing the probe was
mounted on a support which could be moved
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FiG. 7. Co-ordinate system for rotating sphere.

vertically and horizontally to any desired position
by means of screw attachments.

To make a velocity measurement the hot wire
probe was inserted into the boundary layer on
the sphere at a desired position and the end at
which the stem of the probe was attached to the
bearings was moved horizontally to one extreme
or the other on the 90° arc section. In both ex-
treme positions, i.e. 90° apart, the hot wire
probe was rotated about its longitudinal axis
until the galvanometer of the hot wire system
indicated a maximum unbalance, thus indicating
the angular position corresponding to the maxi-
mum velocity in the plane in which the hot wire
was located. Once the maximum velocity in two
planes spaced 90° apart is known, it is possible
to calculate the velocity vector in space since it
must lie in both planes and must coincide with
the line of intersection of the two planes. The
magnitude and direction of the velocity could
therefore be calculated from the experimentally
measured values of the two velocities in the two
planes of measurements. Additional details of
the experimental technique, as well as the
derivations of the equations necessary to calcu-
late the direction and magnitude of a velocity
vector in space are presented in [11].
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EXPERIMENTAL RESULTS OF THE FLOW
STUDIES

Fig. 8 shows in dimensionless form the tan-
gential velocity component in the plane of a
parallel as a function of distance from the
surface of the sphere at 5°, 10° and 30° latitudes
at a Reynolds number of 525 x 10% To con-
struct these figures, it was necessary to determine
first the boundary-layer thickness along a
meridian 8(f). This was done by defining the
boundary layer thickness as that distance from
the surface of the sphere at which the tangential
velocity component in the plane of a parallel
decreases to 2 per cent of the rotational speed
(a £2 sin 6) of the sphere surface and measuring
the distance at which this condition obtained.
Also shown in Fig. 8 are the tangential velocity
profiles predicted by Howarth [2] and Nigam
[3]. It should be noted that although two of the
three measuring stations were located quite
near the equator, there is remarkably close
agreement between the experimental results and
the velocity profile predicted by Howarth’s
solution which was obtained by an expansion
about the pole.

Comparisons of the tangential velocity com-
ponent profiles in planes of a parallel nearer the
poles and the tangential velocity component in
planes of a meridian did not show equally good
agreement; this can be attributed mainly to
limitations in the measuring equipment.

On the basis of dimensionless velocity distri-
butions such as those shown in Fig. 8 and in [3]
it is, however, not possible to evaluate the agree-
ment between experimental measurements and
the predictions made on the basis of the theories
such as those by Howarth and Nigam respec-
tively. To determine the validity of a theoretical
analysis, also the actual boundary-layer thickness
must be compared with that predicted from
theoretical considerations. Such a comparison
is shown in Fig. 9 where the variation in the
experimentally measured boundary layer thick-
ness in a meridian plane along a big circle from
pole to equator is compared with the predictions
of Howarth and Nigam at a Reynolds number of
525 x 10% An inspection of this figure shows
that the boundary-layer thickness predicted by
Howarth’s analysis is in good agreement with
the measured values, but that Nigam’s assump-
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tions yield much too small a boundary-layer
thickness, except near the equator. This result
explains at least in part why at Prandtl numbers
of the order of unity the Nusselt number pre-
dicted analytically was larger than the measured
values—too small a boundary-layer thickness
results in too steep a velocity or temperature
gradient at the surface.

The agreement between Howarth’s theory and
the experimentally measured boundary layer
thickness raised anew the question of the extent
of inflow and outflow regions, since Howarth’s
analysis fails to predict any outflow. Howarth
attributed the cause of this failure in his solution
to the limitations of the boundary-layer equa-
tions which, he said, cease to describe the
flow near the equator in the region of the inter-
action between the two impinging layers from
the upper and lower halves of the sphere.

In view of the limitations in the accuracy of
the measuring equipment available to the
authors, it was not possible to deduce the
radial velocity component from the total velocity
vector with sufficient accuracy to determine the
extent of the inflow and outflow regions over
the sphere with confidence. Kobashi [5], who
used more refined equipment, calculated the
radial component from his measurements of the
total velocity vector; but in view of the extremely
small order of magnitude of this velocity com-
ponent, its accuracy is very questionable. More-
over, since the agreement between Nigam’s
prediction and Kobashi’s measurements of the
extent of the inflow and outflow regions had
originally been a corner stone in the decision
to use Nigam’s solution of the boundary-layer
equations in the analysis of the convection heat
transfer, it was deemed desirable to investigate
the radial flow pattern over the sphere in a
different and more direct manner.

To obtain reliable results, the flow pattern
about the sphere was studied visually in air by
means of two slightly different types of flow
visualization techniques. Although the tech-
niques could not yield quantitative measures of
the velocity, they did give reliable qualitative
indications of the extent of the inflow and out-
flow regions.

In a series of tests smoke from a kerosene
smoke generator was introduced into the air in
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the vicinity of both poles. From there it was
carried by the fan-like motion of the upper and
lower halves of the sphere toward the equator,
where the two streams met head on and then dis-
charged into the room. In one series of tests
the motion of the smoke was photographed in a
conventional manner, with a movie camera
placed some distance away from the sphere. In
another series of tests pictures of the boundary
layer and the separation region at the equator
were obtained at various rotational speeds by
placing a strong light source on one side of the
sphere some distance away; the camera was then
placed in such a manner that it mainly viewed
light which barely grazed the sphere. Pictures
obtained by this method clearly delineated the
smoke filled boundary layer on the surface of
the sphere, as shown in Fig. 10. It is apparent
from an inspection of the photographs in Fig.
10 that at Reynolds numbers below 5 > 10* no
appreciable out-flow occurred from the boundary
layer over the sphere except in a very narrow
zone on both sides of the equator. It is further
apparent that except for the narrow separation
zone at the equator the boundary layer was
Jaminar over the entire sphere; it remained
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laminar over most of the sphere even when
the rotational speed was increased, but increas-
ing the Reynolds number broadened the
separation zone at the equator.

The extent of separation zone about the
equator was obtained quantitatively by means of
the photographic methods described above and
the results are shown in Fig. 11 where the width
of the separation zone about the equator is
plotted in degrees as a function of the Reynolds
number. An inspection of this figure shows that
at Reynolds numbers of about 5 104, the
Reynolds number at which a break in the heat-
transfer characteristics was observed, the separa-
tion zone begins to widen and thus introduces
turbulence into the flow in the vicinity of the
equator. The results of these flow studies are,
therefore, in agreement with deductions from the
heat-transfer results and serve to explain the
overall convection characteristics of rotating
spheres.
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Fic. 11. Extent of turbulent separation zone in the
vicinity of the equator as a function of Reynolds
number.
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In passing it may be of interest to note some
observations regarding the mechanism by which
the laminar flow underwent transition to turbu-
lent flow. Direct visual observations, as well as
movies taken of the smoke introduced into the
boundary layer from both poles, showed that
before transition actually occurred small turbu-
lent spots originated in the flow. These spots
broke up the laminar flow locally and closely
resembled visually the formation of bubbles in a
subcooled boiling liquid or the appearance of
solar flares on the sun. The actual growth
pattern of these turbulent spots was almost
explosive in nature, but did not in all cases pro-
duce an immediate transition of the entire flow.
Additional studies of the flow in the transition
region would be desirable.

CONCLUSIONS

1. At Reynolds numbers below 5 x 10° the
average Nusselt number for a sphere rotating in
an infinite environment is given by Nu = 0-43
Re®5 Pr%% in the range of Prandtl numbers
between 0-7 and 217.

2. At Reynolds numbers between 5 x 10° and
7 x 10% the average Nusselt number for a
sphere rotating in an infinite environment is
given by Nu = 0-066 Re®%” Prot for Prandtl
numbers between 0-7 and 7.

3. At Reynolds numbers below 5 x 10° the
flow induced by a sphere rotating in an infinite
environment is laminar except for a small
region in the vicinity of the equator where the
boundary layers from the two halves of the
sphere meet.

4. The turbulent interaction zone in the
vicinity of the equator is less than 2° latitude in
width at Reynolds numbers below 5 x 10%, but
increases linearly with increasing Reynolds
number as shown in Figs. 10 and 11.

5. Theoretically predicted values of the Nusselt
number, based on a boundary-layer model
assuming a constant boundary-layer thickness,
agree reasonably well with experimental measure-
ment in the range of Prandtl numbers between
4 and 217, but deviate considerably from the
experimental results at Prandtl numbers of the
order of unity.

6. In the laminar flow regime the solution of
the boundary-layer equations for a rotating
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sphere proposed by Howarth [2] predicts the
velocity field closely despite its failure to predict
outflow near the equator.
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APPENDIX. A THEORETICAL ANALYSIS OF
THE AVERAGE NUSSELT NUMBER FOR A
SPHERE ROTATING IN AN INFINITE
MEDIUM.*

The flow engendered by a sphere rotating
about a diameter in otherwise undisturbed fluid
has been investigated by Nigam [3] who con-
structed solutions for this problem in the form

* The derivation of the equations for the temperature
profile follow the method of [4]. They are presented here
in detail because there are some heretofore uncorrected
misprints in the original paper.
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of power series, Subsequently, the temperature
distribution in the fluid associated with the
velocity field found by Nigam [3] was investi-
gated by Singh [4] for a rotating sphere at
a uniform temperature.

Assuming that there is no imposed pressure
gradient or external body force, that the flow is
laminar and steady, and that the derivatives with
respect to ¢ vanish as a result of symmetry, the
conservation equations of continuity, momen-
tum, and energy for a sphere uniformly at a
temperature 7T; rotating in an infinite medium
at temperature T, can, subject to conventional
boundary layer simplifications [2, 4], be written
as

u 1@ v

o a »(;;+-C-lcot6:0 (1A)
y v Op 2 o2
et an
. . W B 2y
and
N
[ 5] e

where u, v, and w are the velocity components in
the r, 0, and ¢ directions (Fig, 7), T is the tem-
perature of the fluid, p is the density, and
v is the kinematic viscosity.

The boundary conditions are:

atr=a;7=T,u=0,v0 =20,

and w = af2sinf (5A)

atr = 0;T=Tp, 0 =0,w=0.

The flow functions satisfying equations
(1A)-(4A) and the boundary conditions (5A), as
proposed by Nigam, are
u=3(G2)22 - 3sinb) ]

(H, + sin® 0H, -+ sin* 0H; + . . )
v=afcosd(sinb F,
+sin® 0 Fy + sin® 0 Fy + ..) } (6A)
and
w=a&2sinf (G, -+ sin® 6 G,
+sint 8 G5+ .. ) ]
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In (6A) the F’s, G’s and H's are functions of
n = (82/»)2 (r — a), and are given by

Fi=Cs(l 4+ 200 — 5)* )

52
— 5 s2(1 — s)?
Fy= Cys (1 4 25) (1 — 5)?

Fy= Cys (L + 25) (1 — s)?
G,= 52+ s)(1 —sp?
Gy = Cys (1 + 25) (1 — s5)2
Gy = Cs {1l + 25} (1 — s)®
—Hy = 4-2822 5% — 7271 §°

+ 4:5432 st —- 0-9689 55
—Hy = 20855 5> — 3-1283 5* + 1-6684 5°
— Hy = 26434 s* — 3-9651 s* 4+ 2-1147 s
where
n = 8, Cy = 1-5183, C, = 0-3732,
Cy = 04257, C, = 02532, C; = 01949,
and & = 2:794.

Substituting the above flow functions in the
energy equation (4A), one finds [4] that the
temperature distribution in the fluid is satisfied
by the expression
cpT == cpTo -+ a?622 (M, + sin? 6 M,

+-sint @ My, + ...). (BA)

If 8, is the thickness of the thermal boundary
layer, the boundary conditions are:

M, (0) = cp(Ts — Tw)/a2, M3 (0) =
M, (0) = 0 at 4 = 0, on the sphere surface (
and M (8)) =0, M;(3,) =0,

M, (8;) = 0, at the edge of the thermal
boundary layer y = 3,.

> (TA)

J

OA)

To ensure a smooth and continuous transition
at the outer edge of the temperature layer it is
necessary that
M (8) =0,M;(8)=0,M;(3)=0aty= 3,

(10A)

The functions M;, M,, and M, satisfying the

above boundary conditions are:

My = [C”(a%ﬁ)} @+s)(l— s (1A)
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Mg = a;5, (1 4 2s) (1 — 57)*

0-5835 Pr
2w s (124)
M5 = b1S1 (1 + 251) (1 - Sl)2
136 P.
493 26__’7 837 (1 — st (13A)

where o = 5,6, and Pr is the Prandtl number.
The constants §,, a;, and b, are determined
from the following equations:

182:5964 83 — 70 8¢ + 10-7355 8

2520
— ) (.
0-5974 8§ =5~ (14A)
{8 (F24 G2+ 3 MyF), — 4 M,F,
M; (0
— 4 MyFy)dn = _7(*") (15A)
and
2 (FR—2FF;,—2G,G;— 5F,M; — 5 M\F,
_ —M0)
+ 6 FM; + 6 FsMy + 6 FiM) dy = —5~—
(16A)

where primes denote differentiations with respect
to 7.

Substituting the expressions for the F’s, G's
and M’s in equations (15A) and (16A) yields
after integrating

dl + dgp + daa-l - 0 (17A)
e+ ep+ oeqa + ey, =0 (18A)
where
Te — T
P = g (oA
and
C2B )
dy= 5 — ,8C + D + 2

+ 1-167 Pr 82K2R — 0-5835 $K2S

dy =3 C,8Z — 1-5 N — 4 C,;dM
1
dy=— 4GP+ 280 —

G 8 2
S‘B CSC+ 4 D — = 16

—5 B

+ 2 GV + % v r(zoA)
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+ (1-45875 — 1-75050 G, (20A)
— 09396 C,) Pr 8*K*R
+ (04698 C, — 0-729375) Pr K?S

&= —5CdM + 6 CiSM
5
ey = —5 (1P + 5 8°Q + 6 (3P

4

The capital letters in the above expressions
(20A) are the following polynomials in K = (8,/8)

-~

1

B = K~—6K3+4K4+$5»K5
—mm+?m
7

C =K+ 2K — 5 K'+ 14K°

EY)
— 14K+ 5 K

D :§K3—6K4+10-4K5
—SK“—}—L?-K"’
9 3 9
w— — 5
L =,K— K+ K
1 9 1
N R o 4 o 5
M = K — o5 KA+ 5 K
1 ; 1 L(21A)
P o 3 _ 5
N =p K-35+ 5K
1 9 ]
. A 4 R
Po=mK—p Ktk
1 1 1
[ 2 3 . 5
R =K — 5K+ K
1 1 1
e 3 . 4 _ 5
S = KKt K
U =;K2—K3+?K4+?K5
_IBEKS_{_ K?



894
10
Y =K+ 5 K= 2K (214)
9 4
. _ Kb _ K86
K+ 5K
1 9 1
— 2 4 _ K5
Z =K — K — (K

-/

The constant @, and b, can be evaluated from
equations (17A) and (18A), or

_ d 4
“T T4 af
_ eyd; ‘esdy ey
b, = _*+e4d3 (E;d“a*e;)' (22A)

To obtain the mean value of the temperature
gradient over the sphere we note that

dr 4T dy
P dar T Pdydr
or
T 2_Q5/2
gf = al/zc (M -+ M sin? 8 - M sin? 6).

At the surface of the sphere the mean value of
the radial temperature gradient (d7/dr)y, is

dTy 1 [[dT a0
(a; w " dmar )| dr O T e,
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a2s5/2

+ M sint 6) dAs] _ | @34)
: v,

, 2, 8
><[M1(0)+3M3(0)+T5M5(0)+...].J

The average unit surface convective conduc-
tance # is defined

h = —kf (dT/dr)m, at surface/(n — Too) (24A)

so that the average Nusselt number can be ex-
pressed in the form

Nu = 2h alks
= —2a (dT/d")m. at surface/(Ts — Tw). (25A)

Combining equations (23A) and (25A) yields

2d Qe

Nu= =g T, epth

[M 0+ 5 M (0)

+ % M) + .. ] (26A)

Substituting the expressions for M|, M;, M and
the constants a, and b,, the preceding expression
takes on the form

202

N = Rel? [X(Pr) + Y(P) é,,(T?B,T )] Q7A)
pds — 1o

where
Re = 4a2Q/v

1 , , y(2) d, 4 fe, d. e,

w LA a7 6 M sinz o 23A)  xpry — V. I %)
[mzﬂ( 1My (Pry =" 2+3d 15\esdy " o)’
Table 1

K 5 Pr M N P 0 z
08 2-2352 3-08711 0091721 0-0157486 0-0254368 0-0052818 0:005893
0-6 1-6764 577 0:059226 0:008836 0-:017829 0-00324 0-039786
0-35 09779 21758 0-02283745 0-0024201 0-0073505 0-:000962 0-02246442
02 0-5588 98:43 0:007811 0-000538 0-00257639 0-00022194 000773
015 0-4191 220-71 0:0044388 0:0002399 0:00146961 0-00009955 00044198
8, ey e e, d, d, X(Pr)
2:2352 —0-08887466 —0-092384 0-44675117 —(0-8228047 —0:3461411 1-4009939
1-6764 —0-057387 —0-08995 0-345175 —0-0297782 —0:26457758 1:26628
09779 —0-022128 —0-057458 0-171137 0:1114606 —0-129752678 1-594112
0:5588 —0-007568 —0-026417 0:069221 0:04819458 —0:0570499 3-375
04191 —0-0043012 —0-01658 0-0417486 0-:0298841 —0-03143597 3561362
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and

o022 4220

& |3dy 15

For the ranges of temperatures, sphere sizes, and
rotational speeds used in this investigation the
quantity a222/c;, (T — Tw) was of the order of

10-3, Since X(Pr)and Y(Pr) are of the same order
of magnitude, the Nusselt number of equation

Résumé
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(27A) is within an accuracy of 1 per cent given
by the relation

Nu = X(Pr) Re'2, (28A)
Assuming values of K, the function X(Pr) was
calculated for values of the Prandtl number
between 3 and 220. At lower values of the
Prandtl number the convergence of the series is
questionable. The results of this analysis are
tabulated in Table 1 and compared with the
experimental data in Fig. 5.

L’écoulement engendré par une sphére en rotation et les échanges thermiques convectifs

vers ou a partir d’une telle sphére ont été étudiés expérimentalement et théoriquement pour des
domaines de nombres de Reynolds allant de 0 4 9-10°, des nombres de Grashof de 7-10*a 3-10° et
des nombres de Prandtl de 0,024 4 217. Pour des nombres de Prandtl compris entre 4 et 217 et des
nombres de Reynolds inférieurs & 5-10%, le nombre de Nusselt moyen, qu’il s’agisse de chauffage ou
de refroidissement, est en bon accord avec les résultats du calcul théorique fondé sur la solution des
équations de la couche limite obtenue en supposant que 1’épaisseur de la couche limite est constante
autour de la sphére. Une étude détaillée de I'écoulement de la couche limite, au moyen d’un fil chaud
et par différentes méthodes de visualisation, a montré toutefois que I’épaisseur de la couche limite
croit avec la distance angulaire A partir des poles et qu'au voisinage de 1'équateur, ou les couches
limites des deux hémisphéres de la sphére en rotation se rejoignent, il se produit un décollement trés
complexe. L’étendue de la région de décollement a été déterminée et on a observé quelques phénoménes
de transition inhabituels.

Zusammenfassung—Die um eine rotierende Kugel entstehende Strémung und der konvektive Wirme-
transport zu oder von der Kugel wurden experimentell und theoretisch im Bereich der Reynoldszahlen
von 0 bis 9-10%, den Grashofzahlen von 7:10* bis 3-10° und den Prandtlzahlen von 0,024 bis 217
untersucht. Fiir Prandtlzahlen zwischen 4,0 und 217 und Reynoldszahlen kleiner als 5-10* zeigte
sich die mittlere Nusseltzahl fiir Kiihlung wie auch fiir Heizung gut iibereinstimmend mit dem Ergebnis
einer theoretischen Analyse, die auf einer Losung der Grenzschichtgleichungen mit konstant angenom-
mener Grenzschichtdicke um die Kugel beruhte. Eine genauere Untersuchung der Grenzschicht-
stromung mit Hilfe eines Hitzdrahtes und verschiedener Methoden der Sichtbarmachung zeigte
Jedoch, dass die Grenzschichtdicke mit der Winkelweite von den Polen zunimmt und dass in der
Aquatorgegend, wo sich die Grenzschichten der oberen und der unteren Hilfte der rotierenden
Kugel treffen, eine komplexe Strémungsablosung auftritt. Die Ausdehnung des Ablosungsbereiches
wurde bestimmt und einige ungewohnliche Ubergangsphinomene wurden beobachtet.

ABHOTAIHA—OKCIIEPHMEHTANIBHO M TEOPETHYECKH MCCIE0BAIMCh KOHBEKTHBHHIM TEIIo-
00M€eH NOBepXHOCTM BPAIIAIOLIEroCA 1IApa ¥ BHB3BAHHOE BpPAIleHUEM TEUEHHE CPeXH B IIpe-
menax yncen Peftnomeaca or 0 go 9 x  10%, I'pacroda or 7 x 10° u Ipaugras ot 0,024 mo
217. Haitgero, uro ana uncen Ipaugras or 4,0 7o 217 u uucen Peitnompuca menee 5 x 10*
cpefnee yncio HyccembTa Kak AJA OXIUKACHUA, TAK M AJIA HArPEBAHUA XOPOILO COTIIACYETCA
C pesyJbTaTOM TEOPETHYECKOTO AHAIH32, OCHOBAHHOTO HA DPENIEHMH YPABHEHWMH MOTpaHuy-
HOT'O CJI0A Iapa NPH YCJIOBHM PABHOMEPHOi TONWMHEL ci0f. OLHAKO, AeTallbHOe HCCIeHo-
BaHMEe TeYeHHUA B IMOTPAHMYHOM CJI0e ¢ IIOMOINBIO METOIA HATPETON IPOBOJOKM M JPYIHX
C110c000B BU3YAIM3ANMI [MOKA3AII0, YTO TOIMMHA NOI'PAHHYHOTO CJIO0A B NeHCTBUTEILHOCTH
BO3pacTaer ¢ yBejleueHHeM YIIIOBOTO PACCTOAHMA OT HoutocoB. Hpome roro, B6ausu skBaTopa,
Te CMBIKAIOTCH LIOTPAHMYHbIE CJIOM BEPXHEr0 U HUMHETO TOJIYIIApuii, UMEeT MeCTO CIOMHBIN
oTpHB I0TOKA, OmnpepeséH pasmep o0macTu OTpeBa. B ombTax HaGmogaaucs HeOOHYHELIE
ABJEHHMA IHePeXofa.



